Adhesion GPCRs in Kidney Development and Disease

نویسندگان

  • Salvador Cazorla-Vázquez
  • Felix B. Engel
چکیده

Chronic kidney disease (CKD) represents the fastest growing pathology worldwide with a prevalence of >10% in many countries. In addition, kidney cancer represents 5% of all new diagnosed cancers. As currently no effective therapies exist to restore kidney function after CKD- as well as cancer-induced renal damage, it is important to elucidate new regulators of kidney development and disease as new therapeutic targets. G protein-coupled receptors (GPCRs) represent the most successful class of pharmaceutical targets. In recent years adhesion GPCRs (aGPCRs), the second largest GPCR family, gained significant attention as they are present on almost all mammalian cells, are associated to a plethora of diseases and regulate important cellular processes. aGPCRs regulate for example cell polarity, mitotic spindle orientation, cell migration, and cell aggregation; all processes that play important roles in kidney development and/or disease. Moreover, polycystin-1, a major regulator of kidney development and disease, contains a GAIN domain, which is otherwise only found in aGPCRs. In this review, we assess the potential of aGPCRs as therapeutic targets for kidney disease. For this purpose we have summarized the available literature and analyzed data from the databases The Human Protein Atlas, EURExpress, Nephroseq, FireBrowse, cBioPortal for Cancer Genomics and the National Cancer Institute Genomic Data Commons data portal (NCIGDC). Our data indicate that most aGPCRs are expressed in different spatio-temporal patterns during kidney development and that altered aGPCR expression is associated with a variety of kidney diseases including CKD, diabetic nephropathy, lupus nephritis as well as renal cell carcinoma. We conclude that aGPCRs present a promising new class of therapeutic targets and/or might be useful as diagnostic markers in kidney disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A novel evolutionarily conserved domain of cell-adhesion GPCRs mediates autoproteolysis

The G protein-coupled receptor (GPCR) Proteolysis Site (GPS) of cell-adhesion GPCRs and polycystic kidney disease (PKD) proteins constitutes a highly conserved autoproteolysis sequence, but its catalytic mechanism remains unknown. Here, we show that unexpectedly the ∼40-residue GPS motif represents an integral part of a much larger ∼320-residue domain that we termed GPCR-Autoproteolysis INducin...

متن کامل

Development and Cytogenetic Characterization of a Continuous Bovine Kidney Cell Line (IRKHBK) and Evaluation its Susceptibility to some Viruses

In this syudy a continuous bovine kidney cell line derived from a primary bovine kidney cells was established for the first time in Iran. The cells were originating from two-day-old normal male calf of Holstein breed. The cell cultures were continuously passaged following complete proliferation of primary cells. The specific properties or characteristics of the cell were defined using cytogenet...

متن کامل

A GAIN in understanding autoproteolytic G protein-coupled receptors and polycystic kidney disease proteins.

A large and poorly understood class of G protein-coupled receptors (GPCRs) are involved in cell adhesion and contain an autoproteolytic site known as the GPCR proteolysis site (GPS) located immediately N-terminal to the first transmembrane span. This motif of B50 amino acids is also found juxtaposed to the first transmembrane span of an unrelated family of proteins associated with polycystic ki...

متن کامل

Interaction of Gα12 and Polycystin-1 in Autosomal Dominant Polycystic Kidney Disease

Polycystin-1 (PC1) is a large cell membrane protein. Its mutation is responsible for the majority of autosomal dominant polycystic kidney disease (ADPKD). PC1 complexes are localized in kidney apical and baso-lateral regions. It affects polarity, cell-cell contact and cell-matrix adhesion. Heterotrimeric G proteins are critical signaling molecules in renal cystogenesis in ADPKD. The activated s...

متن کامل

Dissecting signaling and functions of adhesion G protein-coupled receptors.

G protein-coupled receptors (GPCRs) comprise an expanded superfamily of receptors in the human genome. Adhesion class G protein-coupled receptors (adhesion-GPCRs) form the second largest class of GPCRs. Despite the abundance, size, molecular structure, and functions in facilitating cell and matrix contacts in a variety of organ systems, adhesion-GPCRs are by far the most poorly understood GPCR ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2018